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1. INTRODUCTION

The eigenanalysis problem of rods with a cross-section discontinuity is a common subject of
interest, also treated in textbooks [e.g., references [1, 2]]. The problem has conjugates in the
area of torsional vibrations of bars, sound propagation in pipes [3] and technical
applications in "elds such as structure-borne sound analysis and power ultrasonics.

The simplest mathematical approach to the problem consists in using elementary rod
theory in conjunction with idealized transition conditions at the discontinuity. This
approach leads to an exceptionally simple boundary-value problem lending itself to
analysis but, in exchange, its validity is known to be restricted to slender rods, low
frequencies [2, 4, 5] and modest cross-section jumps.

The validity ranges can be extended by introducing improved rod theories [4]
and considering ways of more realistic modelling of transition conditions [6]. But
before proceeding to more complex mathematical models it would be appropriate to
extract as much information as possible from the simplest one. This, in the author's
opinion, is the raison d1eL tre of simple models and constitutes the purpose of the present
letter.

Thus, we consider the free longitudinal vibrations of the rod shown in Figure 1 for which
the simple eigenanalysis leads to the following commonplace results for di!erent sets of
simple boundary conditions.

Fixed}free rod. Eigenequation [1]:
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Fixed},xed rod. Eigenequation:

sinb#(c!1) cos ab sin(1!a)b"0, (4)

rth eigenfunction is as already given in equations (2) and (3).
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Figure 1. Rod with a cross-section discontinuity.
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Free}free rod. Eigenequation [2]:

sinb#(c!1) sin ab cos(1!a)b"0. (5)

rth eigenfunction:
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In equations (1}7) b"J(ol2/E) u, where u is the eigenfrequency, m"x/l, a"l
1
/l,

c"A
1
/A

2
(cross-section ratio), b

r
is the rth root of equation (1), (4) or (5) depending on the

context, o, E and l are the mass density, Young's modulus of elasticity and total length of
the rod, respectively, and the amplitude of the "rst portion of;

r
(m) in equations (3) and (6) is

arbitrarily taken as unity.
In section 2 of this letter we elaborate on the immediate results given above and deduce

further closed-form information on the behaviour of the eigencharacteristics. This, in turn,
makes it possible for ad hoc approximate formulae to be given for the in"nite sequence of
eigencharacteristics, as is done in section 3. Finally, section 4 points out certain
isospectrality relations between the analyzed rods.

2. ELABORATED RESULTS

2.1. FIXED}FREE ROD

For further reference note "rst that when c"1, a"0 or 1 both eigenequation (1) and rth
eigenfunction (2) reduce, as they should, to those of a uniform "xed}free rod, namely
cosb"0 whose roots are
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and ;0
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antinodes (free end included) are situated, respectively, at
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Inserting the b0
r

values of equation (8) into equation (1) and solving the latter for a, one
"nds out that there are two sets of cross-section change location a for which the rth
eigenfrequency of the uniform rod is preserved. These are nothing but the nodes and
antinodes given in equation (9). As a matter of fact one observes in Figure 2(a), where the
"rst four roots b

r
of equation (1) are plotted versus a for four di!erent values of c, that each

b
r
line oscillates about the corresponding b0

r
line (labelled c"1) intersecting it at the nodes

and antinodes of the rth mode. In between, there are certain a points where maximal
departure of b

r
from b0

r
occurs. It is possible to get information about these points by

calculating db/da and d2b/da2 from equation (1) by using di!erentiation rules of implicit
functions and following the usual procedures of the classical min}max theory. After some
calculation one "nds out that the extrema lie on members with parameter values s"0, G1,
G2,2 of the parametric family of curves
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Figure 2. Fixed}free rod. Dependence of the eigenparameters on the cross-section change location:
(a) eigenfrequencies, (b) amplitude ratio, (c) phase shift between the two portions of the eigenfunctions for c"2,*,
r"1; } }, r"2; } ) }, r"3; -----, r"4.
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(see Figure 2(a)), that the minimal and maximal values of b
r
are

br
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irrespective of mode number r, and that maxima occur at the points
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Equation (12) shows that Db reduces to zero when c"1 and tends to n/2 in the extremal
cases where c tends to zero or in"nity. Thus, one concludes that n/2 constitutes an upper
limit for the eigenvalue shifting caused by a cross-section discontinuity.

Turning now ones attention to the eigenfunctions and considering "rst A
r
of equation (3)

which de"nes the amplitude ratio of the second to the "rst portion of the rth eigenfunction
one notes that when a changes this ratio will change between the extremal values of c and 1,
irrespective of mode number r. As can be checked by direct substitution of mN

r,n
and then of

mAN
r,n

for a, and consequently b0
r

for b
r
from equations (9) and (8) into equations (2) and (3),

these extremal values occur when the cross-section change is placed at a node or an
antinode of the uniform beam respectively. These features can be seen in Figure 2(b), where
the "rst four A

r
values are plotted versus a for c"2. Inspection of this "gure also shows that

the value of A
r

is independent of r when a"0)5. This value can be calculated from

equations (1) and (3) to be A"Jc.
Next consider u

r
of equation (3) which de"nes the phase shift between the two portions of

the rth eigenfunction, i.e., controls the distance between two successive nodes (and
antinodes) intercepting the discontinuity. Substitutions similar to those above from
equations (8) and (9) into equations (2) and (3) show that u

r
reduces to zero when the

cross-section discontinuity is placed at a node or an antinode of the rth mode of the uniform
rod. On the other hand, the extremal values u

r
may take on, can be calculated from

equation (3), by applying the necessary conditions for an extremum, to be

ur
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irrespective of mode number r. These results are visible in Figure 2(c) where the "rst four /
r

values are plotted versus a for c"2. Equation (15) shows that the extremal values of u
r
tend

to $n/2 in the extremal cases, where c tends to zero or in"nity and therefore that its
absolute value is always less than n/2.
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2.2. FIXED}FIXED ROD

When either c"1, a"0 or a"1, eigenequation (4) and eigenfunction (2) reduce to those
of a uniform "xed}"xed rod, namely sinb"0 and;0

r
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r
sinb0

r
m. For further reference

we note that the roots of the former are
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An analysis shows that most of the results of section 2.1 do also hold for the present case.
As the results common to all the three considered boundary conditions will be summarized
in section 2.4, only results which are peculiar to rods with "xed}"xed boundary conditions
will be given here. Figure 3(a) shows the "rst four roots b

r
of equation (4) plotted versus a for

four di!erent c values. The extrema of b
r
's can now be shown to be situated on curves

s"1, 2,2 of the parametric families
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Figure 3. Fixed}"xed rod. Dependence of the eigenparameters on the cross-section change location:
(a) eigenfrequencies, (b) amplitude ratio, (c) phase shift between the two portions of the eigenfunctions for c"2,*,
r"1; } }, r"2; } ) }, r"3; -------, r"4.
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their values being as given in equation (11), where b0
r
must be substituted from equation (16)

and again
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for any mode. Maxima occur when the cross-section change is placed at the points
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Figure 3(b) and 3(c) shows the "rst four A
r
and u

r
values plotted on a for c"2.

2.3. FREE}FREE ROD

We again note that when either c"1, a"0 or a"1 both eigenequation (5) and
eigenfunction (6) reduce to those of a uniform free}free rod, namely sin b"0, whose roots
are
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The "rst four roots b
r
of equation (5) (b

0
"0 of the rigid-body mode excluded) are plotted

versus a for four di!erent c values in Figure 4(a). The loci of the extrema of various b
r
lines

and their extremal values can be shown to coincide with those given in equations (11), (18)
and (19). However, the locations of the maxima and minima are now
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Finally, the "rst four A
r
and u

r
values are plotted on a for c"2 in Figure 4(b) and 4(c).

2.4. GENERALIZATIONS

Conclusions which are common to all the three boundary conditions considered above
may be summarized as follows: (1) Placing a cross-section change at an antinode of the rth
mode of the uniform rod is of no consequence on either of its rth eigencharacteristics.
(2) Placing a cross-section change at a node of the rth mode of the uniform rod does not
alter the rth eigenfrequency or the positions of the nodes and antinodes of the rth mode but
alters the rth mode shape so that the amplitude of the second portion is c times that of the
"rst. (3) Placing a cross-section change at a point which is neither a node nor an antinode of
the uniform rod's rth mode in#uences all its rth eigencharacteristics. The maximal value of



Figure 4. Free}free rod. Dependence of the eigenparameters on the cross-section change location:
(a) eigenfrequencies, (b) amplitude ratio, (c) phase shift between the two portions of the eigenfunctions for c"2:*,
r"1; } }, r"2; } ) }, r"3; ------, r"4.
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the resulting shift of an eigenvalue b0
r

is as given in equation (12), thus, always less than n/2,
the amplitude ratio A

r
of the second to the "rst portion of the rth eigenfunction between

1 and c (Figures 2(b), 3(b), 4(b)) and the extremal values of the phase shift u
r
between the two

portions of the rth eigenfunction are as given in equation (15) (Figures 2(c), 3(c), 4(c)), thus
always less than n/2 in absolute value.

3. AN APPROXIMATE EIGENANALYSIS

It should be observed that Figures 2(a), 3(a) and 4(a) have a very orderly structure. In view
of the fact that the problem of determining the rules governing the order of these "gures and
that of "nding closed-form general solutions to the related eigenequation are two aspects of
the same mathematical problem one is led to have a closer look at the apparently simple
order of these "gures and try to extract its internal logic. It should, however, be clear that as
no exact solution in terms of known functions can be given for the corresponding
eigenequations, no exact rule can be expected to be determined of the order of these "gures
how simple it may look. We will, therefore try here humbly, to guess these rules
approximately and thereby propose approximate closed-form formulae for the
eigencharacteristics in terms of known functions. Reconsidering the "gures with this goal in
mind, one notices that the b

r
(a) lines can reasonably be assumed to evolve from ordinary

sine curves
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Figure 5. Assumed construction of b
r
(a) curves.
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through a mapping which horizontally projects the points of vertical lines a"aN onto the
parametric curve a"a (s, b) passing through the point P

0
(aN , b0

r
) (Figure 5). Note that this

assumption holds good at a values corresponding to nodes and antinodes of the uniform
rod and those where extrema of b

r
occur. As the equations of the parametric curves

a"a (s, b) as well as the amplitudes Db and the wavelengths

j
r
"2 DmAN

r,n
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n
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(27)

of the hypothetical sine curves are known from the content of section 2, approximate
formulae can easily be given on the basis of the above assumption for the eigenvalues b

r
, and

this will be done in what follows.

3.1. FIXED}FREE ROD

For a "xed}free rod, using equations (8), (9), (12) and (27), equation (26) may be
written as
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r
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r
aN ), r"1, 2,2 . (28)

Inserting the co-ordinates aN and b0
r

of the point P
0

into equation (10) and solving for s one
"nds out that the required parametric curve corresponds to the parameter value
sN"(2a6 !1) b0

r
/n. Substituting this and equation (28) into equation (10) and solving for

a one obtains
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where bM
r
(aN ) is to be substituted from equation (28). Equations (28) and (29) constitute

a parametric representation, with aN as the parameter, of the proposed approximation for the
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b
r
(a) curves. For any given aN value, the rth eigenvalue corresponding to the a value given by

equation (29) can be calculated approximately from equation (28). It would of course be
desirable to obtain a closed-form formula for b

r
(a) rather than a parametric representation.

To this end expand the right-hand side of equation (29) into a Taylor series about a, retain
only linear terms and solve for aN to obtain

aN (a):a#
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[1/(2a!1)#sgn(1!c)Db(bM 0
r
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(a)) cos (2b0

r
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where bM
r
(a) is to be substituted from equation (28) with a as the argument. Now, the rth

eigenvalue b
r
can approximately be calculated from equations (28) and (30) for any given

a and c values. Also, an approximation for the rth eigenfunction can be obtained by
substituting the approximate value of b

r
into equations (2) and (3). To give an idea about the

performance of the approximate formula, the percentage error commited in the calculation
of b

1
through equations (28) and (30) is plotted versus a for c"1

2
, 3
4
, 4
3

and 2 in Figure 6(a).
Higher eigenvalues are not considered here because the largest error percentage occurs in
the calculation of b

1
. Upon inspection of Figure 6(a) one observes that the error remains at

the order of 0.01% for c values close to 1 such as c"3/4 and 4/3, that it quickly grows
larger with c getting away from 1, but that it still does not exceed 0)1% for c"2 and 0)35%
for c"1/2. The performance of the approximate formula is therefore satisfactory for many
practical purposes with the restriction that it is not used for c values too far from unity.
Figure 6. Accuracy of the approximation: (a) "xed}free, (b) "xed}"xed rod (} ) }, c"2;*, c"4/3; } }, c"3/4;
} ) ) }, c"1/2).
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However, ultimately, this should not be considered as a true restriction because the uniform
stress distribution assumption implicit in the elementary rod theory and the idealized
transition conditions used here, already restricts the validity of the present analysis to
c values close to unity.

3.2. FIXED}FIXED AND FREE}FREE RODS

Repeating the above analysis for "xed}"xed rods by using equations (16}19), (26) and (27)
one obtains exactly the same results as given in equations (28}30). However, now b0

r
and Db

are, of course, those given in equations (16) and (19) respectively.
Finally, repeating once again the analysis for the vibrating modes of free}free rods by

using equations (18), (19), (22), (23), (26) and (27) the results are again similar to those
presented in equations (28}30). The only di!erence is that the argument of the signum
function in equations (28) and (30) must now read as (c!1) instead of (1!c). It should be
clear that now b0

r
and Db are those given in equations (22) and (19) respectively.

The percentage error of a fundamental frequency calculation for "xed}"xed rods using
equations (28) and (30) is plotted on a for various c values in Figure 6(b). The same "gure
can also be used for free}free rods by substituting 1/c for c or 1!a for a. This "gure shows
that the accuracy of the approximate formula is also satisfactory for "xed}"xed and
free}free rods, subject to the restriction voiced above.

4. SOME REMARKS ON ISOSPECTRAL RODS

Two vibratory systems having the same frequency spectrum (or identical eigenequations)
are said to be isospectral [7]. The existence of isospectral "xed}free rods was pointed out in
reference [8] and the general problem of obtaining rods which are isospectral to a given one
was treated in reference [7]. Our aim here is to underline certain isospectrality relations
between stepped rods as deduced from the foregoing analysis.

First, consider "xed}free rods and note that eigenequation (1) is invariant under
permutation of a and (1!a) (or that Figure 2(a) is symmetrical with respect to the line
a"0)5). The conclusion is that two "xed}free rods with similar cross-section ratio c and
with the lengths of the two portions interchanged are isospectral to each other. This actually
constitutes a discontinuous example to a rule well established for rods with continuous
cross-section change, namely two "xed}free rods with cross-sections A

1
(m) and

A
2
(m)"C/A

1
(1!m) are isospectral [7, 8].

Next, consider "xed}"xed and free}free rods and note that substitution of either 1/c for
c or (1!a) for a into equation (4) yields equation (5) and vice versa. As a result of this,
Figures 3(a) and 4(a) can be obtained from one another by relabelling the lines c as 1/c or by
inverting the "gure with respect to the line a"0)5. The conclusion is that a stepped
free}free rod is isospectral (with the zero eigenvalue corresponding to the rigid-body mode
excluded) to a "xed}"xed one obtained by interchanging the lengths of the two portions or
(which is the same thing) inverting the cross-section ratio. Again a discontinuous example to
the general rule [7] establishing that a free}free rod with continuous cross-section A

1
(m) is

isospectral to a "xed}"xed rod with cross-section A
2
(m)"C/A

1
(m) is in question.

Finally, noting that for a"0)5 both eigenequations (4) and (5) reduce to the
eigenequation common to the uniform "xed}"xed and free}free rods (or that all the b

r
lines

of Figures 3(a) and 4(a) intersect the b0
r

line at a"0)5), one concludes that all "xed}"xed
and free}free rods with a cross-section change at their midpoint are isospectral
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(zero eigenvalue of free}free rods excluded) whatever their cross}section ratio c may be
(also c"1).

5. CONCLUSIONS

The e!ect of a cross-section discontinuity on the eigencharacteristics of longitudinally
vibrating rods is studied. Certain general features of the dependence of the eigenvalues and
eigenfunctions on the position and magnitude of the cross-section change are determined
and closed-form formulae are proposed which approximately describe this functional
dependence.

Although the interest is focused on the longitudinal vibrations of rods in this study, it
should be noted that due to the mathematical equivalence and physical conjugacy of the
problems, all the results are equally applicable to the torsional vibrations of bars and wave
propagation in pipes with cross-section discontinuities by appropriate rede"nition of the
parameters b and c.
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